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This Worksheet expands on the theory of the Fabry-Perot etalon and thin-film interference in Chapter 3 and

considers the widely-used examples of anti-reflection coatings and high-reflectivity coatings.

1. Thin films and anti-reflection coatings
In this Exercise we derive an equation for the reflection and transmission coefficients for a thin film such as
a single-layer anti-reflection coating or an oil film on water. The interface between two optical media with
refractive indices n0 and n2 is coated with a thin film with refractive index n1 and thickness ` as shown in
Fig. 1. By treating the thin film as a Fabry-Perot cavity, as in Optics f2f eqn (3.35), show that the reflected
and transmitted fields are given by

Er
E0

=
r01 + r12ei2n1k`

1− r10r12ei2n1k`
, (1)

and

Et
E0

=
t01t12ein1k`

1− r10r12ei2n1k`
, (2)

respectively, where rjk = (nj−nk)/(nj+nk) and tjk = 2nj/(nj+nk) are the amplitude reflection and transmission
Fresnel coefficient at an interface between a media with refractive indies nj and nk, see Optics f2f p. 21. [Hint:
−r01r10 + t01t10 = 1.]

Figure 1: Thin film reflection. The first three
contributions to the reflection coefficient are
shown. Thereafter each subsequent term picks
up another factor of r10r12ei2n1k`.

From Fig. 1 we can write

Er
E0

= r01 + t01t10r12ei2n1k` + t01t10r12ei2n1k`(r10r12ei2n1k`) + t01t10r12ei2n1k`(r10r12ei2n1k`)2 + . . . , (3)

= r12 +
t01t10r12ei2n1k`

1− r10r12ei2n1k`
=
r01 + (−r01r10 + t01t10)r12ei2n1k`

1− r10r12ei2n1k`
=

r01 + r12ei2n1k`

1− r10r12ei2n1k`
. (4)

similarly the transmission is

Et
E0

= t01t12ein1k` + t01t12ein1k`(r12r10ei2n1k`) + t01t12ein1k`(r12r10ei2n1k`)2 + . . . , (5)

=
t01t12ein1k`

1− r10r12ei2n1k`
. (6)

By substituting the Fresnel relations for rjk, show that

Er
E0

=
(n0n1 − n1n2) cosn1k`+ i(n0n2 − n21) sinn1k`

(n0n1 + n1n2) cosn1k`+ i(n0n2 + n21) sinn1k`
, (7)
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and

Et
E0

=
4n0n1

(n0n1 + n1n2) cosn1k`+ i(n0n2 + n21) sinn1k`
. (8)

Substituting rjk = (nj − nk)/(nj + nk) and tjk = 2nj/(nj + nk) in the expression for Er, we have

Er
E0

=
(n0 − n1)(n1 + n2) + (n0 + n1)(n1 − n2)ei2n1k`

(n0 + n1)(n1 + n2)− (n1 − n0)(n1 − n2)ei2n1k`
, (9)

=
(n0n1 − n1n2) cosn1k`+ i(n0n2 − n21) sinn1k`

(n0n1 + n1n2) cosn1k`+ i(n0n2 + n21) sinn1k`
, (10)

and similarly for the transmitted field. Explain, briefly, why the normalised sum of the modulus squared of the
reflected and transmitted field is not equal to one, i.e.∣∣∣∣ ErE0

∣∣∣∣2 +

∣∣∣∣ EtE0
∣∣∣∣2 6= 1 .

It is the flux (intensity) that is conserved and the flux includes a factor proprtional to the refractive index, see
Optics f2f p. 21, eqn (2.23). The flux continuity equation in this example gives∣∣∣∣ ErE0

∣∣∣∣2 +
n2
n0

∣∣∣∣ EtE0
∣∣∣∣2 = 1 .

For a quarter-wave layer n1` = λ/4, show that the reflection coefficient is zero when n21 = n0n2. This is known
as an anti-reflection coating.

Substituting n1k` = π/2 in the expression for Er, we find

Er
E0

=
(n0n2 − n21)

(n0n2 + n21)
, (11)

which is zero when n21 = n0n2.

2. Transmission through a glass plate or gap
Show that the transmission through a thin plate of width ` and refractive index n is

Et
E0

=
4neink`

(n+ 1)2 − (n− 1)2ei2nk`
. (12)

Using the same derivation as above, the transmission is

Et
E0

= t01t12ein1k` + t01t12ein1k`(r12r10ei2n1k`) + t01t12ein1k`(r12r10ei2n1k`)2 + . . . , (13)

=
t01t12ein1k`

1− r10r12ei2n1k`
=

4n0n1ein1k`

(n0 + n1)(n1 + n2)− (n1 − n0)(n1 − n2)ei2n1k`
. (14)

Putting n0 = n2 = 1 and n1 = n we get

Et
E0

=
4neink`

(n+ 1)2 − (n− 1)2ei2nk`
. (15)

How does the formula change if we consider the transmission through a free space gap between two glass plates
refractive index n. In this case n0 = n2 = n and n1 = 1 and the result is the same!

3. Transmission through a layer using boundary conditions
An alternative way to derive the transmission through a layered medium is to use the continuity of the electric field
at each interface. This method is particularly useful for multilayer coatings used to produce high-reflectivity
mirrors and interference filters. At the mth interface both a reflected (or backwards-propagating) field and
a transmitted (forward-propagating) field is produced as illustrated for a single layer in Fig. 2.
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Figure 2: The forward and backward propa-
gating fields at successive interfaces for a single
layer between two media.

If the media are labelled 0, 1 and 2, then the field continuity equations at interface one and two are

E(1)r = r01E0 + t10E(2)r ein1k`1 , (16)

E(1)t = r10E(2)r ein1k`1 + t01E0 , (17)

and

E(2)r = r12E(1)t ein1k`1 , (18)

E(2)t = t12E(1)t ein1k`1 , (19)

respectively, where `1 is the length of medium 1. Using these equations to find an expression for the transmission
through the layer, and show that the result is the same as the result predicted by summing the geometrical

progression, e.g. eqn (2). From eqn (19) E(1)t = E(2)t e−in1k`1/t12. Substituting into eqn (18), E(2)r = (r12/t12)E(2)t .

Substituting for E(1)t and E(2)r in eqn (17) we get

E(2)t

t12
e−in1k`1 =

r10r12
t12

E(2)t ein1k`1 + t01E0 . (20)

Rearranging the transmission through the layer is

E(2)t =
t01t12E0ein1k`1

1− r10r12ei2n1k`1
.

This is the same result as eqn (2).

4. Multilayer coatings: high-reflectivity dielectric mirrors
The analysis above is easily extendable to N interfaces (N −1 layers between media with indices n0 and nN ). In
this case there is a backwards wave in each layer, except the last. The fields at the first, mth, and Nth interfaces
are given by

E(1)r = r01E0 + t10E(2)t eik`m , (21)

E(1)t = r10E(2)r eik`1 + t01E0 , (22)

E(m)
r = rm−1,mE(m−1)

t eik`m−1 + tm,m−1E(m+1)
r eik`m , (23)

E(m)
t = rm,m−1E(m+1)

r eik`m + tm−1,mE(m−1)
t eik`m−1 , (24)

E(N)
r = rN−1,NE(N−1)

t eik`N−1 , (25)

E(N)
t = tN−1,NE(N−1)

t eik`N−1 , (26)

The fields for the mth interface are shown in Fig. 3. Write these equations in the form of a matrix equation

Figure 3: The forward and backward propagat-
ing fields at the mth interface.
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M · x = b where M is an 2N × 2N matrix and x is vector with terms [. . . , E(m)
r , E(m)

t , . . .].



−1 0 t10eik`1 . . .

0 −1 r10eik`1 . . .

.

.

.

.

.

.

.
.
.

rm−1,me
ik`m−1 −1 0 tm,m−1eik`m

tm−1,me
ik`m−1 0 −1 rm,m−1eik`m

.
.
.

.

.

.

.

.

.

. . . rN−1,N e
ik`N−1 −1 0

. . . tN−1,N e
ik`N−1 0 −1





E(1)r

E(1)t

.

.

.

E(m)
r

E(m)
t

.

.

.

E(N)
r

E(N)
t



=



−r01E0
−t01E0

.

.

.

0

0

.

.

.

0

0



.

The solution is given by x = M−1 · b. Write a code to solve the matrix equation and show that for N = 2 it
gives the same answer as eqn (2).

Figure 4: The normalised reflected (blue) and
transmitted (green) flux for a 2 µm thick layer
with n21 = n0n2, where n0 = 1.0 and n2 = 1.5,
calculated using the Fabry Perot results, eqs
(1) and (2). The orange curve shows that the
total flux is conserved. The purple dots are
calculated by solving the matrix equation, see
python notebook multilayer.ipynb online.

Extend the code to plot the transmission versus wavelength for many quarter-wave layers with alternating high
and low index, as Fig. 5. Investigate how the number of bilayers increases the reflectivity.

Figure 5: Schematic of a high-reflectivity
mirror with alternating quarter-wave layers
with high nh and low nl index. The quarter-
wave condition for the central wavelength λc
fixes the thickness of each layer, i.e., `h =
λc/(4nh) and `l = λc/(4nl).

Explain, briefly, why a single low-index quarter-wave layer gives an anti-reflection coating but alternating high
and low quarter wave layer produces a high-reflectivity coating.

For single low-index quarter-wave layer, the reflections from th first and second interface are λ/2 out of phase
and interfere destructively. For a high-index layer on a lower index medium the reflection at the second interface
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Figure 6: The normalised reflected flux for
16 bilayers with high (nh = 2.4) and low
(nl = 1.4) index (quarter-wave at λ = 500 nm)
on a glass substrate. The result is a high-
reflectivity mirror. Calculated by solving the
linear eqns (21)-(26) numerically, see python
notebook multilayer.ipynb online.

has an additional minus sign so add in phase with the reflection from the first interface. The reflective from the
next high index layer travels an extra 2× λ/2 so also add in phase with first reflection.
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